

สมาคมวิจัจวิทสาการขนส่งแห่งเอเชีย

Possibility of Ethanol Usage as Diesel Substitute in Thai Transportation Sector

Nuwong CHOLLACOOP

nuwongc@mtec.or.th Bioenergy Group, MTEC

3rd ATRANS Symposium "Equity and Efficiency in Transportation"

26 August 2010 Imperial Queen's Park Hotel, Bangkok

A Driving Force for National Science and Technology Capability

เมาคมวิจัจวิทสาการขนส่งแห่งเอเซีส

Team Members

No.	List of members		Position	Affiliation
	Asst. Prof. Dr. Chumnong			
1	Sorapipatana Sorapipatana			JGSEE/KMUTT
2	Capt. Dr. Samai Jai-in			RTN
	Assoc. Prof. Dr. Supachart		Advisors	
3	Chungpaibulpatana			SIIT
4	Asst. Prof. Surachai Bovornsetha	nan		KMUTT
5	Prof. Dr. Sumrueng Jugjai			KMUTT
6	Dr. Nuwong Chollacoop		P <mark>roject leade</mark> r	MTEC
7	Dr. Yossapong Laoonual			KMUTT
8	Dr. Sittha Sukasi		C <mark>o-Researchers</mark>	MTEC
9	Dr. Subongkoj Topaiboul			MTEC
10	Mr. Jakapong Pongthanaisawan		R <mark>esearch</mark>	JGSEE/KMUTT
11	Mr. Peerawat Saisirirat		assistants	KMUTT

- Brief introduction of the project
 - Rationale, Objective, Methodology
- Energy demand model set up*
 - NV, FE, VKT
 - Validation with historical data & correction factor
- Scenario analysis
 - Business as usual (BAU) for baseline
 - Broadly divided into
 - Introduction of already commercialized ED95 bus in bus sector
 - ✓ Introduction of nearly commercialized ED95 vehicle in other sectors
 - Aim to benchmark 9 MLPD target in 2022
 - Evaluate effects on diesel fuel substitution and CO₂ emission reduction
- Conclusions & recommendation

*Details on poster outside

กรมพัฒนาพลังงานทดแทน และอนุรักษ์พลังงาน กระทรวงพลังงาน Development Strategy on Alternative Energy for 2008 - 2022

Projected with 2008 average crude oil price of \$94.45/barrel

A Driving Force for Nationa Remarks Techasoof Clanii 2009

- Aims to assess feasibility of using ethanol in transportation sector (especially as diesel substitute)
 - Construct a database model for energy consumption in transportation
 - Analyze above model for various scenarios to reflect different levels of diesel substitution by ethanol
 - Assess technical-economical feasibility of using ethanol as diesel substitute in transportation sector

Methodology

- Use LEAP^{*} to construct energy demand model for transportation sector
- Run scenarios analysis on ED95 technology introduction

รายงานฉบับสมบรูณ์

การวิจัยเชิงนโยบายเพื่อสนับสนุนการพัฒนาและการใช้

โดย

พลังงานหมุนเวียนและการเพิ่มประสิทธิภาพในการใช้

พลังงานในประเทศไทยระยะที่ 2

มิถุนายน 2552

g F

แก๊สโซฮอล์ E85 ต่อการใช้พลังงานในภาคขนส่ง

สำนักงานกองทุนสนับสนุนการวิจัย

เสนอโดย

เสนอต่อ

ภาควิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโหโลยีพระจอมเกล้าธหบุรี

*Stockholm Environmental Institute, <u>http://www.energycommunity.org/</u>

การพัฒนากรอบและแนวทางการจัดทำฐานข้อมูลที่จำเป็นสำหรับการ วางแผนและการติดตามประเมินผลกระทบของทางเลือกการประหยัด พลังงานในภาคขนส่ง

- Brief introduction of the project
 - Rationale, Objective, Methodology
- Energy demand model set up*
 - NV, FE, VKT
 - Validation with historical data & correction factor
- Scenario analysis
 - Business as usual (BAU) for baseline
 - Broadly divided into
 - ✓ Introduction of already commercialized ED95 bus in bus sector
 - ✓ Introduction of nearly commercialized ED95 vehicle in other sectors
 - Aim to benchmark 9 MLPD target in 2022
 - Evaluate effects on diesel fuel substitution and CO₂ emission reduction
- Conclusions & recommendation

*Details on poster outside

Basic of energy demand calculation

EPPO (2008)

NEPO&KMUTT (1997)

DLT = Department of Land Transport

http://apps.dlt.go.th/statistics_web/statistics.html

Validation with historic records Reports from Department of Alternative Energy Development and Efficiency (DEDE)

Thailand energy situation 2006, 2007, 2008

Thailand energy statistics 2009 (Preliminary report)

A Driving Force for National Science and Technology Capability

a member of NSTD/

- Brief introduction of the project
 - Rationale, Objective, Methodology
- Energy demand model set up
 - NV, FE, VKT
 - Validation with historical data & correction factor
- Scenario analysis
 - Business as usual (BAU) for baseline
 - Broadly divided into
 - Introduction of already commercialized ED95 bus in bus sector
 - Introduction of nearly commercialized ED95 vehicle in other sectors
 - Aim to benchmark 9 MLPD target in 2022
 - Evaluate effects on diesel fuel substitution and CO₂ emission reduction
- Conclusions & recommendation

สมาคมวิจัตวิทยาการขนส่งแห่งเอเซีย

Business As Usual (BAU)

Model assumption (2010 to 2020) New SI car => E20 within 10 years¹ New SI motor-cycle => E10 within 10 years¹ New fixed route bus => NGV bus within 10 years²

¹E-policy report (E85 promotion plan) ²Cabinet resolution on 27 May 2008

All fuel consumption by engine technology

Diesel fuel consumption by vehicle type TEC

CNG consumption by vehicle type

Ethanol consumption by vehicle type

Ethanol promotion for gasoline substitute TE

Estimation of ethanol supply

Sunangééénauutengéénainté

สมาคมวิจัตวิทสาการขนส่งแห่งเอเซีย

B.2.1 Replacing the NGV bus with ED95 bus in **Bangkok** area @2010

Model assumption

New SI car => E20 within 10 years New SI motor-cycle => E10 within 10 years New fixed route bus => ED95 bus within 10 years

Ethanol consumption (BAU)

a member of NSTD

Applied ED95 bus on BMTA

Scenario: B.2.1, Fuel: Ethanol

CNG consumption (BAU)

Applied ED95 bus on BMTA

a member of NSTDA

Greenhouse Gas (GHG) production calculation

$$EM = \sum_{i} EC \cdot EF_{i} \cdot GWP_{i}$$

- EM = Emission (kg CO₂ equivalence)
- EC = Energy consumption (TJ)
- EF_i = Emission factor of emission i (kg/TJ)
- GWP_i = Global warming potential of emission i (g CO₂/g emission i)
 - i = Emission type, (CO₂, CH₄, N₂O)

CNG fuel	CO ₂	CH ₄	N ₂ O
EF (kg/TJ)	55.5	50	0.1
GWP (gCO ₂ /g)	1	25	289
ι.	Timate Change ines for as Inventories be Bundia, sub També		
IPC	au Canability		

25

Effect from ED95 bus substitution

Impact on the Fuel Economy

a member of NSTD/

สมาคมจิจังจิทสาการขนส่งแท่งเอเซีย

All Scenario Results

A Driving Force for National Science and Technology Capability

Diesel substituted compared to BAUN

30

Ethanol demand (Million liter per day)

31

- Brief introduction of the project
 - Rationale, Objective, Methodology
- Energy demand model set up
 - NV, FE, VKT
 - Validation with historical data & correction factor
- Scenario analysis
 - Business as usual (BAU) for baseline
 - Broadly divided into
 - ✓ Introduction of already commercialized ED95 bus in bus sector
 - ✓ Introduction of nearly commercialized ED95 vehicle in other sectors
 - Aim to benchmark 9 MLPD target in 2022
 - Evaluate effects on diesel fuel substitution and CO₂ emission reduction
- Conclusions & recommendation

Conclusions & Recommendation

Conclusions

- ED95 technology in CI engine can be employed to increase ethanol demand toward the 9 MI/day target in National Alternative Energy Plan
- In addition, ED95 helps reduce GHG emission that would have been emitted from CNG bus (due to carbon neutral ethanol)
- With ED95 technology in CI engine, better fuel efficiency can be achieved compared to CNG in SI engine.
- ED95 technology helps enhance energy security in the country

Recommendation

Even with strong introduction of ED95 technology in CNG and diesel vehicle, a target of 9 MI/day ethanol consumption is still challenging
→ need to be integrated with the measure to increase ethanol consumption in gasoline market (SI engine)

Applied ED95 bus on BMTA

Applied ED95 bus on BMTA

Applied ED95 bus on BMTA

CNG substituted refer to BAU

40

Ethanol demand (Million liter per day)

สมาคมวิจัดวิทยาการขนส่งแห่งเอเซีย

สมาคมวิจังวิทยาการขนส่งแก่งเจเซีย

Vehicle type

A. Total vehicle under motor vehicle act	B. Total vehicle under land transport act					
MV.1 Not more than 7 passengers	PC01	Bus				
MV.2 Microbus & Passenger Van	passenger car	- Fixed Route Bus	BUS01 Fixed route bus			
MV.3 Van & Pick Up	PC02 pickup	- Non Fixed Route Bus	BUS02 Non fixed route bus			
MV.4 Motortricycle		- Private Bus	BUS03 Private bus			
MV.7 Fixed Route Taxi (Subaru)	PC03 motor tri-cycle	Small Rural Bus	sBus04 Small bus			
MV.8 Motortricycle Taxi (Tuk Tuk)		Truck				
MV.6 Urban Taxi	PC04 taxi	- Non Fixed Route Truck	Truck01 Non fixed route truck			
MV.5 Interprovincial Taxi		- Private Truck	Truck02 Private truck			
MV.9 Hotel Taxi	PC05					
MV.10 Tour Taxi	Commercial rent car					
MV.11 Car for Hire						
MV.12 Motorcycle	PC06					
MV.17 Public Motorcycle	Motor cycle					
MV.13 Tractor						
MV.14 Road Roller						
MV.15 Farm Vehicle		record from DLT (Dec2009)				
MV.16 Automobile Trailer		http://apps.dlt.go.th/statistics_web	o/statistics.html			

Number of vehicle in Bangkok

Number of vehicle in provincial region

Percent share of fuel used in vehicle stocks

		Single liquid fue	el engine		Dual-fuel engine				Dedicated gas		
	SI Engine		CI Engine	Bi-fuel SI	Bi-fuel SI	DDF	DDF	LPG	CNG		
	Gasoline	E10	E20	g	LPG	CNG	LPG	CNG	dedic.	dedic	
PC01	78.16										
private passenger car	42.86%	56.57%	0.57%	20.38%	1.46%	0.00%	0.00%	0.00%	0.00%	0.00%	
PC02		5.25%									
pickup	67.95%	32.05%	0.00%	94.75%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
PC03		42.26%	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
motor tri-cycle	79.58%	20.42%	0.00%	0.00%	17.84%	0.00%	0.00%	0.00%	37.48%	2.22%	
PC04 taxi		14.61%									
	42.86%	56.57%	0.57%	0.00%	77.00%	7.62%	0.00%	0.00%	1.37%	0.00%	
PC05		69.73%									
commercial rent car	42.86%	56.57%	0.57%	26.92%	3.35%	Sma	llom	ount	<u>∩0/</u>	0.00%	
PC06	100.00%				Sina		ouni ~				
motor cycle	65.57%	34.43%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
Bus07	1.24%										
fixed route bus	100.00%	0.00%	0.00%	94.77%	2.39%	0.00%	0.00%	0.00%	0.00%	1.60%	
Bus08		0.39									
hon fixed route bus	100.00%	0.00%	0.00%	99.61%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
Bus09		0.80%									
private bus	100.00%	0.00%	0.00%	99.20%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
Truck10 non fixed route truck		0.00%									
	100.00%	0.00%	0.00%	99.30%	0.00%	0.00%	0.22%	0.48%	0.00%	0.00%	
Truck11		0.39%									
private truck	100.00%	0.00%	0.00%	99.61%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00	

Fuel Economy for Single Fuel Engine: Derivation from 1997 data

- <u>Assumption</u>: The fuel economy is depended only on the vehicle (engine) size and the engine technology.
 - a) So, the <u>FE ratio</u> (SI to SI, or CI to CI) between <u>two vehicle types</u> are constant during the consideration year.

b) And also the <u>FE ratio</u> between two engine technology (SI to CI) of <u>each vehicle type</u> are constant by the same manner.

km/litre				
	Gasoline Gasohol Gasohol E20**		Gasohol E20**	Diesel
PC01	1	-	-	1.0763
PC02	¹ N₽₽O	& KMU	TT 1997	1.1597
PC03	1.0601	-	-	1.2116
PC04	0.9881	-	-	1.1294
	Gasolin <mark>e</mark> F	PO 200	8 Gasohol E20**	Diesel
PC01	10.62*	11.30*	-	11.44*
PC02	10.00*	-	-	11.21*
PC03	-			
PC04		-	-	-

yr.1997 => yr.2008									
SI Engine									
Gasoline	Diesel								
10.62*	11.30*	9.85	11.44*						
10.00*	9.64**	9.28	11.21*						
10.92**	10.52**	10.13	12.00**						
10.58**	10.20**	9.82	11.63**						
11.83**	11.40**	10.97	13.00**						
	yr.199 Gasoline 10.62* 10.00* 10.92** 10.58** 11.83**	yr.1997 => yr SI Engine Gasoline Gasohol E10 10.62* 11.30* 10.92** 10.52** 10.58** 10.20** 11.83** 11.40**	yr.1997 => yr.2008SI EngineGasolineGasohol E10Gasohol E20**10.62*11.30*9.8510.00*9.64**9.2810.92**10.52**10.1310.58**10.20**9.8211.83**11.40**10.97						

A Driving Force for National Science and Technology Capability 47

Fuel Economy for Bi-fuel and Diesel Dual Fuel

Bi-fuel engine:
$$e.d. = FE_1 \cdot DS_1 + FE_g \cdot DS_g$$
Diesel Dual fuel: $e.d. = FE_{DDF.} \cdot (DS_1 + DS_g)$ *noteDS : Device share
by energy unit

 The device share (DS.) and fuel economy (FE.) of the Diesel Dual Fuel are referred to "Wannatong et al., SAE2007-01-2047"

> JSAE 20077147 SAE 2007-01-2047

Combustion and Knock Characteristics of Natural Gas Diesel Dual Fuel Engine

> Krisada Wannatong, Nirod Akarapanyavit, Somchai Siengsanorh PTT Research & Technology Institute, PTT Public Company Limited

Somchai Chanchaona Department of Mechanical Engineering, King Mongkut's University of Technology Thonburi

Copyright @ 2007 Society of Automotive Engineers of Japan, Inc. and Copyright @ 2007 SAE International Inc.

Basic of energy demand calculation

- There are MANY fuel choices and MANY engine technology to calculate fuel consumption
- Issues with Bi- and Dual-fuel
- Need certain assumption in the calculation

Bi-fuel engine: $e.d. = FE_{l} \cdot DS_{l} + FE_{g} \cdot DS_{g}$ Diesel Dual fuel: $e.d. = FE_{DDF.} \cdot (DS_{l} + DS_{g})$ *note DS : Device share by energy unit

ซีซีซีซีทหากรชนส่งแห่งเอเซีย

Fuel economy and Vehicle Kilometer of Travel

NEPO & KMUTT, 1997

EPPO report, 2008

Fuel economy (BKK)

			Dual fuel	Dedicated engine						
km/litre	SI Engine				Ri-fuel	Bi-fuol	Diesel	Diesel	I PG	CNG
	Gasoline	Gasohol E10	Gasohol E20**	Diesel	SI LPG	SI CNG	DDF LPG	DDF CNG	dedic.	dedic
PC01	10.62*	11.30*	9.85	11.44*					9.87*	10.85*
PC02	10.00*	9.64**	9.28	11.21*					11.57*	11.33*
PC03	10.92**	10.52**	10.13	12.00**	Di fuol	angina:	9.71*	9.29*		
PC04	10.58**	10.20**	9.82	11.63**	DI-IUEI	engine. e.d. = FE	9.83**	10.81**		
PC05	11.83**	11.40**	10.97	13.00**	Diesel D	ual fuel:	11	-gg	10.99**	12.08**
PC06	32.77*	29.24*	-	-		e.d. = FE		$+DS_{g}$	-	-
Bus01	2.18**	2.10**	2.03	2.40*	*note	DS : De	vice shar	e	2.03**	1.86*
Bus02	2.09**	2.01**	1.94	2.30**		by energy unit				2.13**
Bus03	2.10**	2.02**	1.95	2.31**					1.95**	2.14**
Truck01	2.57**	2.48**	2.38	2.83*					2.39**	2.63**
Truck02	2.22**	2.14**	2.06	2.44**					2.07**	2.27**

*EPPO report, 2008

**Extrapolated from NEPO & KMUTT, 1997 using engine size/technology assumptions

Road distance & Number of vehicle/TEC

of NSTDA

Г		Total road	Total numbe	J Simplest model to					
	Year	distance (Rural)	Bangkok Rural		estimate VKT!!!				
	1996	53,768	3,549,082 12,544,814						
	1997	55,321	3,872,327 13,793,913		over time				
	1998	57,233	4,016,594	14,843,918					
	1999	59,306	4,162,846	15,933,690					
	•		$Rd_2 VKT_2 NV_2$						
	•		$\overline{Rd} = \overline{VKT} \cdot \overline{\Sigma NV}$						
	•		•						
	2004	63,287	4,288,468	16,336,251					
	2005	63,062	4,899,969	17,671,093	\mathbf{k} k m supply \propto k m demand				
	2006	63,773	5,557,111	19,250,186					
	2007	64,745	5,715,078	19,903,369	sum over VKT x NV of each vehicle type				
	Assume road expansion mostly from provincial region (data obtained from Department of Highways)								
<u>h</u> 1	Thailand transport portal (Rural) http://vigportal.mot.go.th/portal/site/PortalMOT/stat/index6URL/ A Driving Force for National Science and Technology Capability 52								

Vehicle Kilometer of Travel

Assume little road Rd_{2} VKT_2 NV_2 expansion VKT₁ Rd, NV_2 Rd_{2} ΣNV_2 $\frac{VKT_2}{VKT_1} \cdot \frac{1}{2}$ Rd_2 VKT₂ Rd. $Rd_1 \quad VKT_1$ NV_1 Rd_{2} VKT_2 $VKT_2 \sum NV_1$ $\sum NV_1$ VKT₁ \overline{Rd}_1 NV_2 VKT_1 $\sum NV_2$ = 0.6956= 0.8201= 69.56% = 82.01% Bangkok **Provincial** area Yr 1 is 1997 (NEPO & KMUTT data) Survey of VKT only available Yr 2 is 2008 (EPPO data) in this two years

Vehicle Kilometer of Travel

	Bangkok	Province
PC01 passenger car	9,887*	11,264*
PC02 pickup	15,008*	13,746*
PC03 Motor tri-cycle	6,500*	7,475*
PC04 Taxi	39,982**	49,208**
PC05 Commercial rent car	13,407**	15,808**
PC06 Motor cycle	8,097*	7,414*
Bus01 Fixed route bus	50,746**	39,687**
Bus02 Non fixed route bus	52,168**	49,559**
Bus03 Private bus	31,301**	34,018**
sBus04 Small bus	-	34,433**
Truck01 Non fixed route truck	30,211**	52,845**
Truck02 Fixed route truck	29,128**	44,924**

*EPPO report, 2008

**Estimate in this work by referring to EPPO & KMUTT, 1997

Vehicle Kilometer of Travel

Validation with historic records **Reports from Department of Alternative Energy Development and Efficiency (DEDE)**

Need correction factors with fuel price

Thailand energy situation 2006, 2007, 2008

Thailand energy statistics 2009 (Preliminary report)

A Driving Force for National Science and Technology Capability 58

Old BAU from 2nd Advisory meeting

Correction factors (CF)

Distributed

fuel price

(ex-refinery)

- Influencing parameters from real situation
 - Crude oil price (i.e., energy crisis)
 - Currency exchange rate (i.e., economic situation)
 - Other (i.e., tax, political subsidize)
- Affected variables in model
 - Fuel share evolution
 - FE
 - VKT

Historic value

Predicted value

- Demand vs supply depending on fuel price
 - Gasoline
 - Diesel
 - LPG
 - CNG

Correction factors (CF)

Keep in mind that this CF will not be applied on the vehicle types whose driving habit does not affect on fuel price such as the fixed route bus or Taxi.

Model Validation

Total energy consumption 25,000 20,000 demand (ktoe) 15,000 DEDE record ATRANS\ED95 model#1 Applied correction factor#2 Predicted error#1 10,000 Predicted error#2 Fuel 5,000 14.7% 2. 0 .39% 2006 2007 2008 2009 Year

- Better agreement on total energy • demand
- Absolute value for gasoline and demands still over predicted due to • **CNG/LPG**
- LEAP cannot take into account of • fuel change in existing vehicles like in the case of CNG/LPG conversion kit installation (only apply to new vehicle if fuel switching needs to be accounted for)

Model Validation in %

สมาคมวิจัดวิทสาการขนส่งแท่ดเอเซีย

- Relationship between time and market penetration of new technology.
 - Market introduction \rightarrow Developing market \rightarrow Self-supported market
- Assume S-curve for all scenario analysis with a 10 years span

น้ำมันและก๊าซ

OIL & GAS

ตารางที่ 25 ปริมาณและมูลค่าการนำเข้าก๊าซธรรมชาติจำแนกตามแหล่งนำเข้า

TABLE 25 VOLUME AND VALUE OF NATURAL GAS IMPORTED BY SOURCE

	254 200	2549 2006		2550 2007		2551 2008		2552 ^P 2009 ^P		
แหล่งนำเข้า	ปริมาณ อ้านอูกบาศก์ฟุต VOLUME MMacf	มูลค่า ล้างบาท VALUE Million Baht	ปริมาณ ล้านลูกบาศก์ฟุต VOLUME MMsef	มูลค่า ส้านบาท VALUE Million Baht	ปริมาณ อ้านจูกบาศก์ฟุต VOLUME MMsef	มูลค่า ล้ามบาท VALUE Million Bakt	ปรีมาณ ล้านจูกบาสก์ฟุต VOLUME MMsef	มูลค่า ส้านบาท VALUE Million Baht	SOURCE	
พม่า									MYANMAR	
ยาดานา	196,506	34,031	204,027	34,193	200,570	43,466	197,105	41,176	YADANA	
เยตากุน	148,786	35,855	156,958	36,196	135,660	40,998	140,458	41,157	YETAKUN	
รวม	345,292	69,886	360,985	70,389	336,230	84,464	337,563	82,333	TOTAL	
ทีมา : บริษัท ปลท. 1	ที่มา : บรีษัท ปลท. จำกัด (มหาชน) Source : PTT.									

สอดิตเอ้างอาการเปลาเมล์ไหม่ปี 1.4-8.

TUALLAND ENERGY STATISTICS 2000 20

สมาคมวิจัตวิทหาการขนส่งแห่งเอเซีย

รูปที่ 5-27 สรุปปริมาณความต้องการใช้เชื้อเพลิงเอษานอลในสถานการณ์จำลองต่างๆ

BAU. NGV bus (BKK+Provincial)¹ & apply Gasohol on SI vehicle²

Increasing measure to rep bus bus with ED95 bus

• B.1 Fixed route by 20 (BKK)

Substitute the NGV • **B.2.1** Fixed *y* @20<u>1</u>0 (BKK) ce bus @2010 (BKK) • **B.2.2** Fir

¹cabinet resolution on 27 May 2008 ²E-policy report (E85 promotion plan)

Expand to other diesel vehicles B.2.2 + ... (@2020)

- C.1 Non fixed route bus (BKK)
- C.2 Private bus (BKK)
- lon fixed route b men - Unstitute we the place of the second <mark>ск (</mark>ВКК) C.3 Non fixed ror C.4 Private
- Passenger car (BKK)

C.6 Pickup & Van (BKK)

Conclusions

Impact of ED95

- Advantage
 - ✓ Replace fossil diesel import by indigenous ethanol fuel
 - ✓ Retain use of high efficiency compression-ignition (CI) engine but with ethanol fuel
 - ✓ Income distribution to Thai agriculture sector for ethanol production
 - Less capital intensive infrastructure & easier liquid ethanol fuel handle (compared to CNG)
- Disadvantage
 - ✓ Availability of ED95 technology (fuel & engine)
 - ✓ Need modification to existing diesel engine to be compatible with ED95 fuel
- Unknown?
 - ✓ Future oil price

สมาคมวิจัดวิทหาการขนส่งแห่งเอเซีย

Recommendation

